
4.1.3 Additive Congruential Method

The additive congruential method produces a sequence of integers between 0 andm − 1 according
to the recursion

Zi = (Zi−1 + Zi−k) mod m, , i = 1, 2, 3, . . . ,

where k ≥ 2. To obtain the desired uniformly (0,1) distributed random numbers we again should
choose Ui = Zi/m. The method can have a maximal cycle length of mk . However, the method
has also some disadvantages. Consider for example the special case k = 2. Now, if we take
three consecutive numbers Ui−2,Ui−1 and Ui , it will never happen that Ui−2 < Ui < Ui−1 or
Ui−1 < Ui < Ui−2. (For three independent, uniformly (0,1) distributed random variables both of
these orderings have probability 1/6).

4.1.4 Tausworthe Generators

The recursions in the linear congruential method and in the additive congruential are special cases
of the recursion

Zi = (

k∑

j=1
a j Zi− j + c) mod m, i = 1, 2, 3, . . . .

A special situation is obtained if we take m = 2 and all a j ∈ {0, 1}. In that case the generator pro-
duces a sequence of bits. Such a generator is often called a Tausworthe generator, or a shift register
generator. The sequence Z0, Z1, Z2, . . . , is now transformed into a sequence U0,U1,U2, . . . , of
uniform random numbers in the following way: Choose an integer l ≤ k and put

Un =
l−1∑

j=0
Znl+ j2−( j+1).

In other words, the numbers Un are obtained by splitting up the sequence Z0, Z1, Z2, . . . into
consecutive blocks of length l and then interpreting each block as the digit expansion in base 2 of
a number in [0,1).
In practice, often only two of the a j ’s are chosen equal to one, so we get

Zi = (Zi−h + Zi−k) mod 2.

Example 4.3 If we choose h = 3 and k = 4 and start with the initial values 1,1,0,1, then we get
the following sequence of bits 1, 1, 0, 1, 0, 1,1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0,1, 0, 1, 1, 1, 1, . . . . The
sequence is periodic with period 2k − 1 = 15. If we take l = 4, this leads to the random numbers
13/16, 7/16, 8/16, 9/16, 10/16, 15/16, 1/16, 3/16, . . ..

4.2 Tests of Random Number Generators

Themain properties that a random number generator should have are uniformity and independence.
In this section we will describe two tests, the Kolmogorov-Smirnov test and the chi-square test, to
compare the distribution of the set of generated numbers with a uniform distribution. Furthermore,
we will describe a number of tests that are able to check whether or not the set of generated
numbers satisfies independence.
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4.2.1 The Kolmogorov-Smirnov test

This test compares the empirical distribution FN (x) of a set of N generated random numbers with
the distribution function F(x) = x, 0 ≤ x ≤ 1, of a uniformly distributed random variable. Here,
FN (x) is defined as the number of observations smaller than or equal to x divided by N , the total
number of observations. Let α be the significance level of the test, i.e. α is the probability of
rejecting the null hypothesis that the numbers are uniformly distributed on the interval (0, 1) given
that the null hypothesis is true. Under the null hypothesis FN (x) will tend to F(x) as N tends to
infinity. The Kolmogorov-Smirnov test is based on

D = max | F(x) − FN (x) | ,
the maximal absolute difference between FN (x) and F(x) over the range of the random variable.
Now, if the value of D is greater than some critical value Dα the null hypothesis is rejected. If
D ≤ Dα , we conclude that no difference has been detected between the empirical distribution of
the generated numbers and the uniform distribution. The critical value Dα for the specified signif-
icance level α of the test and the given sample size N can be found in a table on the Kolmogorov-
Smirnov test.

4.2.2 The chi-square test

In the chi-square test, we divide the interval (0, 1) in n subintervals of equal length. The test uses
the statistic

Y =
n∑

i=1

(Yi − E(Yi ))2

E(Yi )
,

where Yi is the number of realizations in the i -th subinterval. Clearly, if N is the total number of
observations, we have E(Yi ) = N/n. Under the null hypothesis of uniformity of the realizations,
it can be shown that the distribution of Y is approximately the chi-square distribution with n − 1
degrees of freedom. So, we compare the value of our statistic Y with the α-percentile of the chi-
square distribution with n − 1 degrees of freedom to conclude whether or not we reject the null
hypothesis. Here, α is again the significance level of the test. It is recommended to choose n and
N such that N ≥ 50 and E(Yi ) ≥ 5.

4.2.3 The serial test

The serial test is a 2-dimensional version of the uniformity test of the previous subsection to test
the independence between successive observations. Therefore, we look at N successive tuples
(U1,U2), (U3,U4), . . . , (U2N−1,U2N ) of our observations and we count how many observations
fall into the N 2 different subsquares of the unit square. We then apply a chi-square test to these
data. Of course, we can also formulate a higher-dimension version of this test.
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4.2.4 The permutation test

In the permutation test we look at N successive k-tuples of realizations (U0, . . . ,Uk−1), (Uk , . . . ,U2k−1),
. . ., (U(N−1)k , . . . ,UNk−1). Among the elements in a k-tuple there are k! possible orderings and
these orderings are all equally likely. Hence, we can determine the frequencies of the different
orderings among the N different k-tupels and apply a chi-squared test to these data.

4.2.5 The run test

In the run test we divide the realizations in blocks, where each block consists of a sequence of
increasing numbers followed by a number which is smaller than its predecessor. For example, if
the realizations are 1,3,8,6,2,0,7,9,5, then we divide them in the blocks (1,3,8,6), (2,0) and (7,9,5).
A block consisting of k + 1 numbers is called a run-up of length k. Under the null hypothesis that
we are dealing with independent, uniformly distributed random variables the probability of having
a run-up of length k equals 1/k!− 1/(k+ 1)!. In a practical implementation of the run test we now
observe a large number N of blocks. Furthermore, we choose an integer h and count the number
of runs-up of length 0, 1, 2, . . . , h − 1 and ≥ h. Then we apply a chi-square test to these data. Of
course, we can do a similar test for runs-down.

4.2.6 The gap test

Let J be some fixed subinterval of (0, 1). If we have that Un+ j /∈ J for 0 ≤ j ≤ k and both
Un−1 ∈ J and Un+k+1 ∈ J , we say that we have a gap of length k. Under the null hypothesis that
the random numbers Un are independent and uniformly distributed on (0,1), we have that the gap
lengths are geometrically distributed with parameter p, where p is the length of interval J (i.e.
P(gap of length k) = p(1 − p)k ). In a practical implementation of the gap test we observe again
a large number N of gaps. Furthermore, we choose an integer h and count the number of gaps of
length 0, 1, 2, . . . , h − 1 and ≥ h. Then we apply a chi-square test to these data.

4.2.7 The serial correlation test

In the serial correlation test we calculate the serial correlation coefficient

R =
N∑

j=1
(Uj − Ū )(Uj+1 − Ū )/

N∑

j=1
(Uj − Ū )2,

where Ū = N
j=1Uj/N and UN+1 should be replaced by U1. If the Uj ’s are really independent

the serial correlation coefficient should be close to zero. Hence we reject the null hypothesis that
the Uj ’s are independent if R is too large. The exact distribution of R is unknown, but for large
values of N we have that, if the Uj ’s are independent, then P(−2/√N ≤ R ≤ 2/

√
N) ≈ 0.95.

Hence, we reject the hypothesis of independence at the 5% level if R /∈ (−2/√N , 2/
√
N ).
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5 Generating Random Variables

In this section we discuss a number of approaches for generating random variables. First, we
discuss the generation of discrete random variables. After that, we will introduce several methods
to generate continuous random variables.

5.1 Generating Discrete Random Variables

Let X be a discrete random variable with arbitrary probabilities

P(X = x j ) = p j , j = 0, 1, 2, . . . ,

∞∑

j=0
p j = 1.

To generate a realization of X , we generate a random numberU and set

X =





x0 if U ∈ [0, p0),
x1 if U ∈ [p0, p0 + p1),
...

x j if U ∈ [ j−1
i=0 pi ,

 j
i=0 pi ),

...

A nice feature of this method is that we always need exactly one uniformly distributed variable
to generate one realization of the desired random variable. Other methods that we will discuss
require often more than one uniformly distributed variables to generate one realization of the de-
sired random variable. This observation can be important when you want to use simulation for the
comparison of different systems and you want to synchronize the input random streams.
Although this method can be used for the generation of arbitrary discrete random variables, it

is not always the most efficient method. Hence we shall give some alternative methods for some
special distributions.

5.1.1 The geometric distribution

A random variable X has a geometric distribution with parameter p if

P(X = k) = p(1 − p)k−1, k = 1, 2, 3, . . .

The geometric distribution can be interpreted as the distribution of the waiting time until the first
head in a sequence of independent coin tossing experiments, where p equals the probability of
throwing a head. Hence, if U1,U2, . . . are independent, identically distributed uniform (0,1) ran-
dom variables and X is the index of the first Ui for which Ui ≤ p, then X is geometrically
distributed with parameter p.
Another way to generate a geometric random variable is by using the fact that if U is uniform

(0,1), then
⌈

ln (U )

ln (1− p)

⌉

is geometric with parameter p.
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5.1.2 The binomial distribution

A random variable X has a binomial distribution with parameters n and p if

P(X = k) =
(
n

k

)
pk(1− p)n−k, k = 0, 1, 2, . . . , n.

The binomial distribution can be interpreted as the distribution of the number of heads in a se-
quence of n independent coin tossing experiments, where p equals the probability of throwing a
head. Hence, if U1, . . . ,Un are independent, identically distributed uniform (0,1) random vari-
ables, then

X =
n∑

i=1
1[Ui≤p]

is binomial distributed with parameters n and p. An alternative generation of a binomial distributed
random variable can be obtained using one of the following two lemma’s.

Lemma 5.1 Let G1,G2, . . . be independent, identically distributed geometric random variables
with parameter p. If X is the smallest integer such that

X+1∑

i=1
Gi > n,

then X is binomial distributed with parameters n and p.

Lemma 5.2 Let E1, E2, . . . be independent, identically distributed exponential random variables
with parameter 1. If X is the smallest integer such that

X+1∑

i=1

Ei
n − i + 1 > − ln (1− p),

then X is binomial distributed with parameters n and p.

5.1.3 The Poisson distribution

A random variable X has a Poisson distribution with parameter λ if

P(X = k) = λk

k! e
−λ, k = 0, 1, 2, . . . .

An alternative generation of a Poisson distributed random variable can be obtained using one of
the following two lemma’s.

Lemma 5.3 Let E1, E2, . . . be independent, identically distributed exponential random variables
with parameter 1. If X is the smallest integer such that

X+1∑

i=1
Ei > λ,

then X is Poisson distributed with parameter λ.
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Lemma 5.4 Let U1,U2, . . . be independent, identically distributed uniform (0,1) random vari-
ables. If X is the smallest integer such that

X+1∏

i=1
Ui < e−λ,

then X is Poisson distributed with parameter λ.

5.2 Generating Continuous Random Variables

We describe four general methods to generate continuous random variables: the inverse transform
method, the acceptance-rejection method, the composition method and the convolution method.
After that, we pay special attention to the generation of normally distributed random variables.

5.2.1 Inverse Transform Method

The inverse transform method is applicable when the distribution function F of a random variable
is continuous and strictly increasing on the domain of the random variable. In that case, the inverse
function F−1 exists and it is easily seen that, if U in uniformly distributed on (0, 1), then X =
F−1(U ) has distribution function F :

P(X ≤ x) = P(F−1(U ) ≤ x) = P(U ≤ F(x)) = F(x).

Example 5.5 • X = a + (b − a)U
is uniformly distributed on the interval (a, b).

• X = −1
λ
ln (1−U )

is exponentially distributed with parameter λ.

• X = 1

λ
(− ln (1−U )1/a

is Weibull distributed with parameters a and λ.

If F is not continuous or not strictly increasing, then instead of working with the inverse function
we have to introduce the generalized inverse function

F−1(u) := min{x : F(x) ≥ u}.

If we do so, then the general method described in section 5.1 for generating discrete random
variables is in fact a special case of the inverse transform method.
Unfortunately, for some often used distribution functions like the normal distribution and the

Erlang distribution we do not have a closed form expression for F−1.
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5.2.2 Acceptance-Rejection Method

Suppose that we want to generate a random variable X with distribution function F and probability
density function f . The acceptance-rejection method requires a function g which majorizes the
density f , i.e. g(x) ≥ f (x) for all x . Clearly, g(x) will not be a probability density function
because c := 

g(x)dx > 1. However, if c < ∞, then h(x) = g(x)/c is a density. The method
applies if we are able to generate easily a random variable Y with density h. The method consists
of three steps. First, we generate Y having density h. Next, we generate a uniformly distributed
random variable U on the interval (0, 1). Finally, we set X = Y if U ≤ f (Y )/g(Y ) or, if not, we
go back to the first step.

Theorem 5.6 The random variable X generated by the acceptance-rejection method has proba-
bility density function f . The number of iterations of the algorithm that are needed is a geometric
random variable with mean c.

Proof: The probability that a single iteration produces an accepted value which is smaller than
x equals

P(Y ≤ x , Y is accepted) =
∫ x

−∞
f (y)

g(y)
h(y)dy = 1

c

∫ x

−∞
f (y)dy

and hence each iteration is accepted with probability 1/c. As each iteration is independent, we see
that the number of iterations needed is geometric with mean c. Furthermore,

P(X ≤ x) =
∞∑

n=1
(1− 1/c)n−11/c

∫ x

−∞
f (y)dy =

∫ x

−∞
f (y)dy.

5.2.3 Composition Method

The composition method applies when the distribution function F from which we want to sample
can be expressed as a convex combination of other distribution functions F1, F2, . . ., i.e.

F(x) =
∞∑

j=1
p j Fj (x)

with p j ≥ 0 for all j and
∞

j=1 p j = 1. The method is useful when it is more easy to generate
random variables with distribution function Fj then to generate a random variable with distribution
function F . The method consists of two steps. First, we generate a discrete random variable J ,
such that P(J = j ) = p j . Next, given J = j , we generate a random variable X with distribution
function Fj . It is easily seen that the random variable X has the desired distribution function
F . The method can be used, for example, to generate a hyperexponentially distributed random
variable.
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5.2.4 Convolution Method

For some important distributions, the desired random variable X can be expressed as the sum of
other independent random variables, i.e. X = Y1 + · · · + Yn , which can be generated more easily
than the random variable X itself. The convolution method simply says that you first generate the
random variables Y j and then add them to obtain a realization of the random variable X . We can
apply this method, for example, to obtain Erlang distributed random variable. However, when n,
the number of phases of the Erlang distribution, is large this may be not the most efficient way to
generate an Erlang distributed random variable.

5.2.5 Generating Normal Random Variables

In this section we will show three methods to generate standard normal random variables. The first
method is an approximative method using the central limit theorem. The second and third method
are exact methods. The second method uses the acceptance-rejection method. The third method is
a method developed by Box and Muller which generates two independent standard normal random
variables by a transformation of two independent uniform random variables.

Method 1: Using the Central Limit Theorem
An easy, but not very good, approximative method of generating standard normally distributed

random variables makes use of the central limit theorem. Recall that the central limit theorem
states that for a sequence Y1, Y2, . . . of independent, identically distributed random variables with
mean µ and variance σ 2,

n
i=1 Yi − nµ

σ
√
n

d→ N (0, 1),

where
d→ means convergence in distribution and N (0, 1) is a standard normal random variable.

If we assume that Yi = Ui , i.e. Yi is uniformly distributed on (0,1), then we have µ = 1/2 and
σ 2 = 1/12. Hence we can take e.g.

12
i=1Ui − 6 as an approximative standard normal random

variable.

Method 2: Using the Acceptance-Rejection Method
The probability density function of the absolute value of a standard normal random value equals

f (x) = 2√
2π
e−

1
2 x
2
, 0 < x < ∞.

Now, the function

g(x) = √
2e/πe−x

majorizes the probability density function f . (Check!) We conclude that we can generate a
standard normal random variable in the following way: Generate an exponential random vari-
able Y with parameter 1 and a uniform random variable U on the interval (0, 1). Accept Y if
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U ≤ e−(Y−1)2/2, otherwise repeat this procedure. Finally, set X = Y or X = −Y , both with
probability 1/2.

Method 3: Using the Box-Muller Method

Theorem 5.7 If U1 and U2 are two independent, uniformly (0, 1) distributed random variables,
then

X1 =
√

−2 ln U1 cos (2πU2)

X2 =
√

−2 ln U1 sin (2πU2)

are two independent, standard normally distributed random variables.

Proof: The joint density function of two independent, standard normal random variables
(X1, X2) equals

f (x1, x2) = 1

2π
e−

1
2 (x

2
1+x22 ), 0 < x1, x2 < ∞.

Introducing polar coordinates, i.e. X1 = R cos 8 and X2 = R sin 8 we get for the joint density
function of R and 8

g(r, φ) = 1

2π
re−

1
2r
2
, 0 < φ < 2π, 0 < r < ∞.

We conclude that R and 8 are independent. Furthermore, it is easy to check that R has the same
density as

√−2 ln U1 and 8 has the same density as 2πU2, where U1 and U2 are uniformly (0, 1)
distributed. Hence the theorem follows.

5.3 Generating Poisson Processes

In practice, we often want to simulate a homogeneous or non-homogeneous Poisson process. The
generation of a homogeneous Poisson process can of course be done by using the fact that this
process has independent, exponentially distributed interarrival times. For the simulation of a non-
homogeneous Poisson process we can use a thinning approach. Suppose that we want to simulate
a non-homogeneous Poisson process with arrival rate λ(t) at time t until time T . Assume that
λ(t) < λ for all t ∈ [0, T ]. We can simulate this process in the following way: we generate a
Poisson process with rate λ and accept a possible arrival at time t with probability λ(t)/λ.
Another popular arrival process is a so-called Markov modulated Poisson process. For this

process, the rate at which, say, customers arrive is modulated by an underlying Markov process. If
the underlying Markov process is in state i , then the arrival rate of the Poisson process equals λi .
Find a way to generate a Markov modulated Poisson process.
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